Reprocessing effectiveness for gastroscopes and colonoscopes: Longitudinal comparison of two methods

Cori L. Ofstead, MSPH1, Harry P. Wetzler, MD, MSPH2, Miriam R. Amelang, BA3, Otis L. Heymann, BA1, John E. Eiland, RN, MS4, Sarah B. Held, RN, MBA5, Michael J. Shaw, MD6

1Ofstead & Associates, Inc., Saint Paul, MN, USA; 2Fairview Maple Grove Medical Center, Maple Grove, MN, USA; 3Division of Gastroenterology, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA

1. Introduction

- Outbreaks have been linked to contaminated gastroscopes and colonoscopes.
- Investigators have identified endoscope defects during outbreaks.
- Study conducted to determine:
 - How much damage and debris accumulate over time?
 - Is it possible to get old endoscopes clean?
- What is the effect of more rigorous reprocessing methods?

2. Methods

- Longitudinal study conducted over 7 months
- Standard reprocessing (control) compared with more rigorous methods
- Baseline and interim data collection included:
 - Observation of reprocessing
 - ATP tests and cultures after cleaning and after HLD
 - Borescope examinations of channels

3. Results

- Baseline:
 - Manual cleaning and HLD commonly ineffective
 - Visible irregularities and residual fluid identified (Figures 1, 2)
 - 1% of colonoscope encounters (n=304)
 - 52% of gastroscope encounters (n=143) (Figure 5)

- Interim:
 - Observation of reprocessing
 - Reduced discoloration in intervention group (Figures 3, 4)
 - Positive cultures post-HLD
 - Interim results by group:
 - Post-cleaning ATP ≥ 200 RLU
 - Control: 29% (N=17), Intervention: 37% (N=19)
 - Post-cleaning ATP ≥ 200 RLU
 - Highest post-cleaning ATP (RLU)
 - Control: 841 RLU, Intervention: 2518 RLU
 - Positive cultures post-HLD
 - Control: 47% (N=30), Intervention: 58% (N=32)
 - Number sent for repair*
 - Control: 2 (N=10), Intervention: 4 (N=11)

4. Summary

- Borescope examinations identified six endoscopes requiring repair
- Routine ATP tests detected endoscopes needing re-cleaning before HLD
- More rigorous reprocessing methods reduced discoloration

References

Disclosures and Acknowledgements

The study was conducted independently by researchers from Ofstead & Associates, Inc., the University of Minnesota, and Fairview Maple Grove Medical Center. The study was supported in part by internal funds from Ofstead & Associates, Inc., and Fairview Maple Grove Medical Center. Study sponsor did not have access to the data or participate in developing the content of this poster.

3. Results

<table>
<thead>
<tr>
<th>Reprocessing methods</th>
<th>Control</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedside pre-cleaning</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Manual cleaning</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Verification of cleaning effectiveness using ATP</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Repeat cleaning and HLD when ATP ≥ 200 RLU</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Automated cleaning in AER</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HLD with glutaraldehyde in AER</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>HLD with peracetic acid in AER</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alcohol flush and forced air purge in AER</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vertical storage in ventilated cabinets</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>